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SUMMARY 
Numerical solutions of the Fluid Dynamics Analysis Package (FIDAP) for some laminar and turbulent flow 
problems, namely (1 )  two-dimensional laminar flow inside a wall-driven cavity, (2) two-dimensional laminar 
flow over a backward-facing step and (3) two-dimensional turbulent flow over a backward-facing step, are 
presented. The consistent integration penalty finite element method is used with Q,/P, (nine-node 
biquadratic velocity with linear discontinuous pressure) finite elements. Results of FIDAP on the above 
problems are compared with other numerical solutions and experimental data to evaluate its numerical 
accuracy. The influence of streamline upwinding is also investigated for all the test cases. 

KEY WORDS Finite element method Incompressible fluids Laminar and turbulent flows 

INTRODUCTION 

Applications of the Galerkin finite element method to incompressible Navier-Stokes equations 
were introduced in the early 1970s.'. A major difficulty in dealing with incompressible flows is the 
elimination of spurious pressure modes. Hood and Taylor3 recognized that the use of equal-order 
interpolations for both velocity and pressure generates spurious pressure modes, and they 
obtained better results with a mixed interpolation method which uses the interpolation function 
for pressure as a polynomial of at least one order lower than that for velocity. However, as 
numerically proved by Huyakorn et ~ l . , ~  the mixed interpolation method does not always provide 
accurate pressures. For example, a bilinear interpolation for velocity with piecewise constant 
pressure, which is similar to staggered grids in the finite difference method, works well in some 
cases but poorly in other cases. 

An extensive study of pressure modes in incompressible flows was done by Sani et a!.5r6 They 
explained that the generation of spurious (checker-board) pressure modes is related not only to the 
selection of interpolation functions for velocity and pressure but also to boundary conditions and 
element distributions. As a remedy for the checker-board pressure modes, they introduced a 
Q2/P, element which uses biquadratic (2D) or triquadratic (3D) interpolations for velocity along 
with linear discontinuous interpolation for pressure. The efficiency of this element was also proved 
by Oden and Jacquotte.' 

Sani et a1.' also explained how to combine the idea of the mixed interpolation method and the 
penalty formulation without selective reduced integrations for the penalty term. The advantage of 
this consistent integration penalty method over a reduced integration penalty method and its 
application to a Q,/P, element are demonstrated by Engelman et a!.,8 and this combination is a 
basic algorithm for the treatment of velocity-pressure coupling of incompressible flows in 
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FIDAP.' FIDAP also has other choices, such as a mixed interpolation method or a reduced 
integration penalty method with other types of elements. 

Another difficulty in the computation of incompressible flows is the treatment of convection- 
dominated flows. In this situation the application of the conventional Galerkin finite element 
method leads to centred differences of the convection terms which cause oscillatory behaviour 
(wiggles) of velocities or any other flow variables. As mentioned in Gresho and Lee," the obvious 
way to eliminate wiggles is by mesh refinement in the convection-dominated region. On the other 
hand, wiggle-free solutions could also be obtained by the use of the 'upwind' finite element scheme. 
The basic idea of the upwind finite element method was proposed by Christie et al." using 
modified weighting functions. Brooks and Hughes" pointed out that this upwinding scheme 
could generate excessive numerical diffusion perpendicular to the flow direction in multi- 
dimensional cases. To overcome this shortcoming, they introduced the streamline 
upwind/Petrov-Galerkin (SUPG) method by modifying the weighting function to add numerical 
diffusion only in the flow direction. The same idea has also been used by Gresho et Instead of 
modifying the weighting function, they defined an additional term, the so-called balancing tensor 
diffusivity (BTD). FIDAP uses BTD-type streamline upwinding (STU) as an option to eliminate 
wiggles in convection-dominated flows.' 

The purpose of this paper is to evalute the numerical accuracy of FIDAP by solving some 
classical benchmark problems. For this purpose, three well known incompressible laminar and 
turbulent flow problems are selected, and computational results of FIDAP on these problems are 
compared with other numerical and experimental data. The influence of numerical diffusion of the 
streamline upwinding scheme is also investigated. 

GOVERNING EQUATIONS 

Let R denote a bounded flow domain with boundary r. The governing equations for a steady, 
laminar, incompressible flow with isothermal conditions are as follows: 

au, a P  a2ui 

a x j  ax j  ax jax j  
p U j - + - - p - = O  i n R ,  

dUi/dxi = 0 in R and r, (2) 
with 

Ui = U,, on rl 
(Pd,, - pdUi/8xj)nj = to, on r2. 

Here r l  u r2 = and rl n r2 = a. In the above equations Ui represents the velocity vector in 
the xi-direction, P the pressure, p the density, p the viscosity and to, the surface traction in the 
xi-direction on r2. 

In turbulent flow the Reynolds-averaged form of the above equations is 

p-u;u; =o,  -aG,  aF ( Pi?, pu.-+-- p--- Jax j  ax, ax jax j  a x j  a -1 (3) 

(4) a Li , jdx i  = 0, 

with 
- ui = ui + Uf ,  P = F + p' 
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and 

To close the turbulent momentum equation (3) ,  the standard k--E turbulence rnodelI4 is used. In 
this model the Reynolds stress is expressed as 

where p t  is a turbulent eddy viscosity defined by 

Here, k and E are the turbulent kinetic energy and its dissipation rate respectively. In the k--E 
turbulence model the governing equations for k and E are 

pu,---  - a& a (pt -- a & )  - c  & ( a U .  -+> a U . ) a U .  ‘ + p C , - = o .  E2 

’ a x j  axj  o,axj a x j  axi axj k 

(7) 

Equations (6H8) contain empirical constants. In the present study we use the values of these 
constants recommended by Launder and Spalding. l4 

In turbulent flow it is not convenient to calculate velocities right up to a solid wall because of the 
existence of a viscous sublayer near the wall where the velocity gradient is very steep. Moreover, 
the k-& turbulence model in equations (7) and (8) is not valid near the wall. Thus, generally, the 
computational domain is not extended to the wall and the wall function is applied to the near-wall 
region. 

As a description of the wall function, the non-dimensional wall distance y + is defined as 

Y + = U,Y/V, (9) 
where v is the kinematic viscosity and U, is a frictional velocity given by 

With these definitions, the tangential velocity near the wall is obtained as 

O < y +  <30, 
30 < y +  < 100 ’ = { ~ ~ ~ ~ ~ l n ( E y + ) ’  

where K is the von Karman constant and E is a roughness parameter. In this study K and E are set 
as 041  and 9.0 respectively. 

NUMERICAL EXAMPLES 

Three test cases are selected for the evaluation of the numerical accuracy of FIDAP. They are (1) 
2D laminar flow inside a wall-driven cavity, (2) 2D laminar flow over a backward-facing step and 
( 3 )  2D turbulent flow over a backward-facing step. The Galerkin formulation of equations in the 
previous section is discretized by the penalty finite element method with consistent integration. 
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The selected penalty constant is for all cases and all Reynolds numbers, and the nine-node 
quadrilateral finite element with linear discontinuous interpolations for pressure (Q2/P1) is used 
in all test cases. When the streamline upwinding (STU) method is selected, the upwind constant is 
fixed as 1.0. Computational tesults of FIDAP are compared with other available CFD solutions 
and/or experimental data. 

2 0  laminar flow inside a wall-driven cavity 

The essential feature of this test case is the prediction of various vortices inside a cavity, as shown 
in Figure 1. The computational results of the present study are compared with those of Ghia et 
al.' who used a multigrid finite difference method for the streamline-vorticity formulations with 
fine (129 x 129 grid points for Re < 3200 and 257 x 257 grid points for Re > 5000) but uniform 
meshes. 

In the present study, 40 x 40 elements (81 x 81 grid points) are used with fine meshes near the 
walls. The non-dimensional characteristic length of the smallest element is 0.00326 at the four 
corners, and the largest is 003074 at the centre of the cavity. The selected Reynolds numbers are 
100, 400, 1000, 3200, 5000, 7500 and 10000. To minimize CPU time and to improve initial 
conditions of the high-Reynolds-number cases, the restart procedure with increments of Reynolds 
numbers is used. In the case of Re=100, the solution of Stokes flow is chosen as an initial 
condition. At every selected Reynolds number the successive substitution method is used for the 
first three iterations for non-linear solutions, and the quasi-Newton method is chosen after the 
fourth iteration. With these combinations, solutions converged smoothly to a 1 YO convergence 
criterion of the relative velocity within four to five iterations for all steps. 

Figure 2 shows the resulting streamline contours for various Reynolds numbers. The influence 
of STU is also shown at each Reynolds number. Values of the streamline contours are shown in 
Table I. Results without STU are generally comparable to those of Ghia et ~ 1 . ' ~  STU contributes 
to the damping of the peaks of stream function values at the centre of vortices, particularly in high- 
Reynolds-number cases. The basic idea of STU in FIDAP has its origin in the balancing tensor 

u -  1.0 
v-  0.0 

9 
u - 0.0 
v - 0.0 u - 0.0 

v - 0.0 

. 1.0 

Figure 1 .  Geometry and boundary conditions of 2D laminar flow inside a wall-driven cavity 
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(WITHOUT STU) 
P 

(WITH STU) P 

(a) Re = 100 

(WITHOUT STU) 

& > d& 

(WITH STU) 

(b) Re = 400 

Figure 2. Streamline contours of 2D laminar flow inside a wall-driven cavity 

diffusivity (BTD) of Gresho et aZ.,I3 which was proposed to improve accuracy and stability in the 
forward Euler time integration of the transient case. The basic concept of BTD and its relationship 
to STU in the steady state is reviewed in the Appendix. The diffusive behaviour of solutions with 
STU may be related to the following factors: (1) the choice of upwind constant, which is 
controllable by users, may be inappropriate, and (2) the third-order differential term in equation 
(13) in the Appendix may not be negligibly small, especially when a Co-continuous quadratic 
interpolation function is used for velocity in the region of relatively small local Reynolds numbers. 

Pressure contours are shown in Figure 3 and their values given in Table I. STU reduces the total 
pressure differences (AP = P,,, - Pmin) for all Reynolds numbers. Comparing these results with 
the results of Gresho et a1.l6 for Re = 5000 and 10000, the AP of the present study without STU 



(WITHOUT STU) 
(c) Re = 1000 

(WITH STU) 

(d) Re = 3200 

(e )  Re = 5000 

Figure 2. (Continued) 
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a d (WITHOUT STU) 

(1)  Re = 

(WITH STU) b 

7500 

(WITHOUT STU) 
b a 

(WITH STU) 

(9) Re = 10,000 

Figure 2. (Continued) 

are larger than those obtained by Gresho et al., but similar trends for the pressure contours are 
generated in both cases. 

Horizontal velocities along the vertical centreline inside a cavity are compared with the results 
of Ghia et in Figure 4. In the case without STU, velocity profiles for all Reynolds numbers are 
in excellent agreement with those of Ghia et al. The minimum difference in the peak velocity is 
1.00% at Re= 100 and the maximum is 157% at Re= 1OOOO. On the other hand, when STU is 
selected, the minimum difference is 8.241% at Re = 100 and the maximum is 26.10% at 
Re = 10000. Again, no horizontal components of velocities are generated near the centres in 
high-Reynolds-number cases when STU is used. 

Extreme values of the stream functions for various vortices inside a cavity are shown in Table 11. 
Results of the present study (both with and without STU) are consistently lower than those of 
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Table I. Values of streamline and pressure contours 
in Figures 2 and 3 

Label Streamline Pressure 

a - 1.0 x 10- -01OOO 
b - 1.0 x 10- 7 - 0.0900 
C -1.0 10-5  - 00800 
d -1.0 10-4 - 0.0700 
e - 0.0 100 - 0.0600 
f - 0.0300 - 00500 
g - 0*0500 - 0.0400 
h - 0.07OO - 0.0300 
i - 0'0900 - 0.0200 

k -0.1100 0.0OOO 
1 -0.1150 0.0 100 

m -0.1175 0.0200 
n 1.0 x 1 0 - 8  00300 
0 1.0 10-7 0.0400 
P 1.0 x 10-6 00500 
9 1.0 10-5 0.0600 
r 5.0 10-5 0.0700 
S 1.0 10-4 0.0800 
t 2.5 x 10-4 0.0900 
U 5.0 10-4 0~1000 

X 3.0 10-3 - 

j -01000 -0.0100 

V 1.0 1 0 - 3  - 

W 1.5 10-3 - 

(WITHOUT STU) (WITH STU) 

(a) Re = 100 

Figure 3. Pressure contours of 2D laminar flow inside a wall-driven cavity 



c (WITHOUT STU) 

(b) Re = 40G 

I 
(WITHOUT STU) 

(c) R e = l  

(WITH STU) 

I I 
(WITH STU) 

000 

(WITH STU) 

(d) Re = 3200 

Figure 3 (Continued) 



(WITHOUT STU) (WITH STU) 
(e) Re = 5000 

I I I 

(WITHOUT STU) 

(1) Re = 7500 
(WITH STU) 

(WITHOUT STU) (WITH STU) 
(9) Re = 10,000 

Figure 3 (Continued) 
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Re = 10000 R e  = 7500 Re = 5000 Re = 3200 R e  s 1000 Re = 400 R e  = 100 

Figure 4. Comparison of u-velocities along a vertical centreline:-, present study without STU; -.-, present 
study with STU; 0, Ghia et al. 

Ghia et al.I5 for ali Reynolds numbers. When STU is not used, the differences from the results of 
Ghia et al. are 1.03% to 6.40% for the primary vortex, 3.28% to 18.1% for the bottom vortices and 
9.85% to 16.67% for the top left vortex. The extreme values of the stream functions for the primary 
vortex are higher than those of Gresho et al.16 This may be simply due to the finer grid 
(h  = 0.03074) employed in the central region compared to that in Gresho et al. (h = 0.060). 

2 0  laminar flow over a backward-facing step 

The geometry and boundary conditions are shown in Figure 5. The aspect ratio of the 
backward-facing step (h)  to the overall cross-sectional width is 1:2, and the total length in the 
horizontal direction is 30 h. A fully deveioped parabolic velocity profile is prescribed at the inlet 
boundary. Predicted results are compared with experimental measurements of Armaly et ~ 1 . ' ~  

30 x 16 elements (61 x 33 grid points) are used with fine meshes near the walls and in the mixing 
zone along the centreline. Selected Reynolds numbers are 100,200,300,400,500,600,700 and 800. 
Here, the Reynolds number is based on the bulk velocity at the inlet boundary and the cross- 
sectional width of the whole domain as defined in Armaly et aI.I7 The same restart procedure as in 
the previous case is adopted. Also, the combination of the successive substitution and quasi- 
Newton methods is used for the non-linear solutions. Four to five iterations were performed in 
each step for 1% convergence of relative velocity. 

" P I-)I' v = 0.0 
I - '  2 v - 0 . 0  

Figure 5. Geometry and boundary conditions of 2D laminar flow over a backward-facing step 
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Figure 6 represents streamline contours for selected Reynolds numbers. Values of the contours 
are given in Table 111. The recirculating zone behind a backward-facing step becomes larger as the 
Reynolds number increases, and another recirculating zone near the upper wall is generated after 
Re = 500. STU reduces peak streamline levels of both recirculating zones. Pressure contours are 
shown in Figure 7 and Table 111 for selected Reynolds numbers. As the Reynolds number 
increases, the order of magnitude of the pressure becomes smaller and the position of maximum 
pressure moves downstream. At a fixed Reynolds number the total pressure difference in the case 
with STU is larger than in that without STU. 

Comparisons with experimental data of Armaly et al." are shown in Figure 8. There is excellent 
agreement between predicted reattachment lengths and experimental measurements. Discrep- 
ancies between computational predictions and experimental data at  high Reynolds numbers may 
come from three-dimensional effects of the experiments. The general trend of the curve of x1 (the 
reattachment length of the recirculating zone behind a backward-facing step) is the same as that of 
Kim and Moin" who used the finite difference method with 101 x 101 grid points. Also, 
predictions of beginning (x2) and end (x3) points of the recirculating zone near the upper wall 
compare satisfactorily with experimental data. With STU, x1 becomes longer by 1.3% (Re  = 800) 
to 8.0% (Re = 100) and x2 and x3 are shifted downstream at low Reynolds number, upstream at 
high Reynolds number. The width of the recirculating zone near the upper wall is decreased by a 
maximum of 34.4% at Re = 500 and by a minimum of 2.7% at Re = 800 by STU. 

tw---%. 
(WITHOUT STU) 

(WITH STU) 

(a) Re = 300 

(WITHOUT STU) 

(WITH STU) 
(b) R e  = 500 

(WITHOUT STU) 

(WITH STU) 
(c) Re = 700 

Figure 6. Streamline contours of 2D laminar flow over a backward-facing step 
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(WITHOUT STU) 

(WITH STU) 
(a) Re = 300 

(WITHOUT STU) 

d c  b 

b c d D l g h i i k l m  0 P I ”  I 
9 9 P 

(WITH STU) 
( b )  Re = 500 

(WITHOUT STU) 

(WITH STU) 

(c) Re = 700 

Figure 7. Pressure contours of 2D laminar flow over a backward-facing step 

2 0  turbulent fiow over a backward-facing step 

The last test case is one of the standard test cases of complex turbulent flows presented at the 
1980-1981 Stanford Conference.” The geometry and boundary conditions are shown in Figure 9. 
The aspect ratio of the backward-facing step (h )  to the overall cross-sectional width is 1 : 3, and the 
total length in the horizontal direction behind a backward-facing step is 24h. As previously 
mentioned, the standard k--E turbulence model of Launder and Spalding14 is used with wall 
functions on non-slip walls. Uniform velocity is given along the inlet boundary. Inlet boundary 
conditions for k and E are prescribed as follows: 

k = 0.003 u ; ,  E =  C,k’’s[-l ,  

where 1 = 0.03 h. 
The Reynolds number, based on the inlet velocity and the height of a backward-facing step, is 

chosen as 69610, which represents the same flow conditions as Kim et a[.’’ 22 x 16 nine-node 
quadrilateral elements (45 x 33 grid points) are used with fine meshes near the walls. For the 
iterative solutions of the non-linear equations the successive substitution method (acceleration 
factor = 0.5) was used. When STU was used, the solution converged to a 0.001% convergence 
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Table 111. Values of streamline and pressure contours in Figures 6 and 7 

Pressure 

Label Streamline Re = 300 Re= 500 Re = 700 

a - 0.0250 - 0.0075 - 0.0350 - 0.143 1 
b -0-0150 - 0.0050 - 00325 - 0.0400 
C - 0.0050 - 0.0025 - 0.0300 -0.0375 
d 0.0000 - 0~0000 - 0.0275 -0.0350 
e 0-lo00 - 0.0050 - 0-0250 -0’0325 
f 0.2000 -0~0100 - 0.0225 - 0.0300 
g 0.3000 -0.0150 - 0.0200 -0‘0275 
h 04000 - 0.0200 -00175 - 0’0250 
1 0.439 1 - 0.0250 -0.0 150 - 0.0225 

0.4408 - 0.0300 -00125 - 0.0200 
- 0.0350 0~0100 0.0175 

j 
k 
1 - 0.0370 0.0075 0.0 150 

m 0.0050 0.0125 
n 0.0025 0.0 1 00 
0 0~0000 0.0075 
P - 0.0050 0.0050 
9 0.0 100 0.0025 
r - 001 15 0.0000 

- 0.00 10 
- 0.0020 t 

- - - 0.0025 

- - 

- - 

- - 

- 

- - 

- 

- - S 
- - 

U 

criterion of the relative velocity with 65 iterations, Newton-type iterative methods were not 
suitable for this particular problem because of complex non-linear terms in the turbulence 
transport equations. When STU was not selected, undershootings (negative values) in the 
solutions of the turbulent transport equations appeared after four to five iterations, and solutions 
started to diverge. 

Figure 10 represents streamline contours. The most important parameter for comparison with 
the experimental data of Kim et dzo is the reattachment length X ,  of the separation zone behind a 
backward-facing step. The acceptable experimental measurement of X ,  is 7.0 & 1.0.’’ The 
predicted value in the present study is 5.59, which is comparable to the finite difference results of 
5.2 to 5.8 reported at the 1980-1981 Stanford C~nference.’~ Underpredictions of X ,  can be 
explained as follows: (1) the k--E turbulence model may be inappropriate to model recirculating 
turbulent flows, and (2) numerical diffusion of upwinding schemes may influence the velocity 
distribution. For example, Heckman et ~ 1 . ’ ~  predicted X, as 6.5 using the skew hybrid upstream 
finite differencing scheme for the momentum equations and the upstream weighted finite 
differencing scheme for the turbulent transport equations. More recently, Betts and 
Haroutunian” reported X, as 6.23 using the explicit time-marching finite element method with 
BTD, but their computations required special treatments for the k and E equations to prevent 
undershootings due to the higher-order accuracy of the BTD scheme. In both Hackman et  al.” 
and Betts and Haroutunian” the longer predictions of X ,  resulted from higher-order upwinding 
schemes for the momentum equations, but those schemes cannot be used for the turbulent 
transport equations. The influence of STU on X ,  in the present study can also be explained by the 
same factors mentioned in the first example. However, STU is essential to obtain converged 
solutions in this particular case. 
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Figure 8. Comparison of reattachment lengths of 2D laminar flow over a backward-facing step 
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Figure 10. Streamline contours of 2D turbulent flow over a backward-facing step 
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Table IV. Values of streamline and turbulent kinetic 
energy contours in Figures 10 and 11 

Turbulent 
Label Streamline kinetic energy 

a - 0.0600 0.0450 
b - 0.0400 0.0400 
C - 0.0200 0.0350 
d 0~0oO0 0.0300 
e 0.2000 0.0250 
f 0.4000 0.0200 
g 0.6000 0.01 50 
h 0.8000 0.0 100 
1 1 .ooO0 

1.2000 j 
k 1.4000 
1 1.6000 - 

m 1.8000 __ 

- 

- 

- 

In Figure 11 the predicted mean velocity profiles are compared with experimental measure- 
ments. The predictions agree reasonably with the experimental data in the downstream region, but 
there are some differences between predictions and measurements in the separation region and 
near the wall. Figure 12 shows a comparison of the pressure coefficients C,.  In the present study 
the velocity and pressure at the centre of the inlet boundary are selected as reference velocity and 
pressure for calculation of the pressure coefficients. C, is generally predicted quite well except in 
the separation zone. The predicted value of C ,  in the downstream region is 0.36. 

Contours of the turbulent kinetic energy (TKE) are shown in Figure 13. The peak TKE values 
exist at the centre of a separation region, and steep gradients of the TKE exist near the mixing zone 
and solid walls. Values of streamline and TKE contours are shown in Table IV. Predicted TKE 
values are compared with experimental data in Figure 14. The location of maximum TKE moves 
close to the wall in the downstream rigion. Differences between predictions and measurements are 
apparent near the separation and mixing zones. The overprediction of the TKE in the separation 
region may be the cause of the underprediction of the reattachment length. 

CONCLUSIONS 

Some classical benchmark problems in 2D laminar and turbulent incompressible fluid flows have 
been tested for the evaluation of the numerical accuracy of FIDAP. As a result of the present 
study, the following conclusions are drawn: 

1. The consistent integration penalty finite element method with a Q2/P1 finite element is 
efficient for the treatment of velocity-pressure coupling of incompressible fluid flow. 

2. Numerical results of FIDAP on laminar flow cases are in good agreement with other CFD 
solutions and experimental data when STU is not used. 

3. When STU is used (with quadratic interpolation functions for velocity) in laminar flow cases, 
velocity distributions and corresponding pressures are significantly influenced by STU, 
especially in the area where local Reynolds numbers are relatively low. [Editorial (PMG) 
remark: This behaviour is actually not so surprising when it is realized that the ‘effective At’ 
(see Appendix) of STU is relatively large in regions of low velocity.] 
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4. STU is useful for obtaining solutions of turbulent flow, but it contributes to underprediction 
of the reattachment length of a separation zone. 
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APPENDIX 

In this Appendix the origin of a balancing tensor diffusivity (BTD) is reviewed using a simple 
advection-diffusion equation: 

aT aT a2 T 
- + Uj- = K - ,  a x j  a x j a x j  at 

Here, for simplicity, it is assumed that K is a constant, U j  is a function of space only and 

Using a conventional Taylor series expansion, the exact solution T"' ' at time t"" = t" + At  is 
au j lax j  = 0. 

expressed by 

T"'I = T " + A t ( g ) " + y ( $ ) " +  . . . . 

Combining with equation (1 l), equation (12) can be rewritten as 

T"" = T" - A t  

a3 T"  At2 a4 T" 
1 axjaxiax,  2 axjaxjaxiaxi 

- A t 2 K U .  - - K 2  

Therefore the forward Euler time integration form of equation (1 1) has the form 

neglecting all terms higher than the second-order differential terms. 
The last term in equation (14) is the so-called balancing tensor diffusivity (BTD) term. As 

mentioned in Gresho et equation (14) maintains a second-order accuracy only if 
K A t  < O(Ax2) ,  otherwise the accuracy is lower than second-order. 

In the steady state there are no clear definitions for the choice of At. For example, in FIDAP' At  
is defined as FAC x ha J(l5) V j  U j ,  where h* is a measure of the element size and FAC is a factor 
that may be set by users. 
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